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I SUMMARY

In this research project the meaning of image matching in the symbolic

sense was explored in detail as well as the nature of the algorithms required

to do image matching. It was determined that image matching was, in fact,

a relational homomorphism problem and that relational homomorphism was a

kind of constraint satisfaction problem that is called consistent labeling.

Consistent labeling problems are prevalent in image understanding work:

for example, line labeling, and region interpretation are consistent labeling

probelms. Having realized that the hard computational problems were consistent

labeling problems, our efforts were concentrated on efficient algorithms for

solving them.

Most of our work generalized the relaxation operators of Ullman and

Waltz and showed how what they produced related to either homomorphisms

or consistent labeling problems. After we finished these theoretical

generalizations, we began empirical studies measuring the improvement of

the relaxation algorithms over standard backtracking.

Although due to AFOSR administrative rules, the grant was not continued

at VPI after I left Kansas, we nevertheless continued our research and

discovered an algorithm that was not of the relaxation type and which gave

considerable improvement over them.

The beginning part of this report briefly describes the papers which

have been published as a result of this research. The main part of this

report describes the results of the research done at VPI.
Al: 3 2)
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II Papers Published

One important process in many artificial intelligence problems is that

of making empirical knowledge (coming from data) about the world consistent

with theoretical or model knowledge we have about the world. Constraint

relaxation techniques have been used with some success in this regard. In

a paper entitled "Scene Analysis, Arrangements, and Homomorphisms" presented

at the 1977 Workshop on Scene Analysis at Amherst, Massachusetts, and

subsequently published as a chapter in the book Machine Vision (Hanson and

Riseman, Ed., 1978), we illustrated how the constraint relaxation as applied

to scene analysis problems is really a technique for finding homomorphisms

from one arrangement (a set of labeled relations) to another. We showed

how a few common scene analysis problems are really problems in establishing

the relationship between one arrangement and another.

The idea of homomorphism between arrangements and a discrete relaxation

algorithm for finding them was discussed in detail in the paper "Arrangements,

Homomorphisms, and Discrete Relaxation" (with J. Karten) that appeared in the

August 1978 issue of the IEEE Transactions on Systems, Man, and Cybernetics.

In a paper entitled "Structural Pattern Recognition, Arrangements,

and Theory of Covers" presented at the 1977 Pattern Recognition and Image

Processing Conference, we illustrated how the concept of arrangements can

be used in structural pattern recognition as an alternative to syntactic

techniques. This paper was substantially expanded, illustrating how syntactic

techniques depend on homomorphisms, and published in the June 1978 issue of

Pattern Recognition. The paper was entitled "Structural Pattern Recognition,

Homomorphism, and Arrangements".



Because relational homomorphism seemed to be playing such a large

role in structural pattern recognition, we began to examine algorithms for

computing relational homomorphisms. This lead to posing a more general type

of constraint satisfaction problem and using more generali-ed discrete

relaxation to make the tree search be more efficient. A paper entitled

"Reduction Operations for Constraint Satisfaction" coauthored with Davis,

Rosenfeld, and Milgram was published in the April 1978 issue of Information

Sciences.

Further generalizing this basically combinatorial problem and the

operations to make the tree search more efficient, we began work on the

consistent labeling problem. A talk was presented at the 1978 Princeton

Workshop on Artificial Intelligence and Pattern Recognition and Image Processing.

The entire scope of this work was prepared with Shapiro as a two part paper

entitled "The Consistant Labeling Problem" part one of which appeared in the

March 1979 issue of the IEEE Transactions on Pattern Analysis and Machine

Intelligence and part two of which will appear in the May 1980 issue.

At VPI work continued on improving the efficiency of the algorithm for

determining consistent labelings. The paper "Tncreasing Tree Search Efficiency

for Constraint Satisfaction Problems" (with G. Elliott) presented at the 1979

International Joint Conference on Artificial Intelligence in Tokyo demonstrated

a new algorithm called "forward checking" whose performance surpasses that of

the earlier relaxation algorithms. The paper in the a ix of this report

discusses the details of this algorithm.
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ABSTRACT

In this paper we explore the number of tree search operations

required to solve binary constraint satisfaction problems. We show

analytically and experimentally that the two principles of first

trying the places most likely to fail and remembering what has been

done to avoid repeating the same mistake twice improve the standard

backtracking search. We experimentally show that a lookahead procedure

called forward checking (to anticipate the future) which employs the

most likely to fail principle performs better than standard backtracking,

Ullman's Waltz's, Mackworth's, and Haralick's discrete relaxation in all

cases tested, and better than Gaschnig's backmarking in the larger

problems.*1

------ ~



I. INTRODUCTION

Associated with search procedures are heuristics. In this paper

we provide a theory which explains why two heuristics used in constraint

satisfaction searches work. The heuristics we discuss can be given

a variety of one line descriptions such as:

Lookahead and anticipate the future in order to succeed in the present.

To succeed, try first where you are most likely to fail.

Remember what you have done to avoid repeating the same mistake.

Lookahead to the future in order not to worry about the past.

We will attempt to show that for a suitably defined random constraint

satisfaction problem, the average number of tree search operations

which employs these principles will be smaller than that required by

the standard backtracking tree search.

To begin our discussion, we need a precise description of the

constraint satisfaction problem we are attempting to solve by a search

procedure. We assume that there are N units (some authors call these

variables instead of units). Each unit has a set of M possible values

or labels. The constraint satisfaction problem we consider is to

determine all possible assignments f of labels to units such that for

every pair of units, the corresponding label assignments satisfy the

constraints. More formally, if U is the set of units and L is the

set of labels, then the binary constraint R can be represented as a

binary relation on U x L: R Q (U x L) x (U x L). If a pair of unit-
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labels (l,,Zl,UZ,,2e) e R, then labels and Z2 are said to be

consistent or compatible for units u and u?. A labelling f of all the

units satisfies the constraints if for every pair l!,LL2 of units

(u lf(' l)),U 2 f(u2)) 6 R. Haralick et al. (1978) call such a labeling

a consistent labeling.

The problem of determining consistent labelings is a general

form of many problems related to artificial intelligence. For example,

scene labeling and matching (Barrow and Tenebaum, 1976, and Rosenfeld

et al., 1976), line interpretation (Waltz, 1972), edge labeling

(Haralick, 1978), graph homomorphisms and isomorphisms (Ullman,

1969), graph coloring (Harary, 1969), boolean satisfiability (Haralick

et al., 1978), and proposition theorem proving (Kowalski, 1975) are

all special cases of the general consistent labeling problem.

Ullman (1966), Waltz (1972),. Rosenfeld et al. (1978 and 1979),

Gaschnig (1977, 1978 and 1979), and McGregor (1979) attempt to

find efficient methods to solve the consistent labeling problem.

Knuth (1975) also analyzes the backtracking tree search, which is

the basis of most methods used to solve the consistent labeling

problem.

For the purpose of illustrating the search required to solve

this problem, we choose the N-queens problem, how to place N-queen

on an N x N checkerboard so that no queen can take another. Here, the

unit set corresponds to the row coordinates on a checkerboard and we

denote them by positive integers. The label set corresponds to the

column coordinates on a checkerboard and we denote them by alphabetic

, :b.
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characters. Hence, the unit-label pair (I,A,2,D) satisfies the

constraint R, [(l,A,2,D) E R), since a queen on row 1 column A

cannot take a queen on row 2 column D. But, the unit label pair

(l,A,3,C) does not satisfy the constraint R because queens can

take each other diagonally (see figure 1).

Using the number letter convention for unit-label pairs, Figure

2 illustrates a portion of a backtracking tree trace for the 6-

queens problem. Notice how the unit 5 labels A, C, E, and F occur

twice in the trace, each time being tested and failing for the same

reason: incompatibility with units 1 or 2. These redundant tests

can be eliminated if the fact they failed can be remembered or if

units 1 or 2 could lookahead and prevent 5 from taking the labels

A, C, E, or F. The remembering done by Gaschnig's backmarking

(1977) and the forward checking approach described in this paper

help eliminate these problems. Notice that once unit 3 takes label

E (Figure la) the only labels left for units 4 and 6 are incompatible.

The forward checking algorithm will not discover this future

incompatibility. However, the first time label B is associated with

unit 4, there is absolutely no label possible for unit 6. Hence,

the search through the labels for 5 and 6 are entirely superfluous

and forward ckecking will discover this (Figure lb). The lookahead

procedures (discrete relaxation) of Ullman (1966), Waltz (1972),

Rosenfeld (1976), Mackworth (1977), and Montanari (1974) help

alleviate the problem illustrated in Figure la as well as in Figure

lb.

11,*
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Section II gives a description of the full and partial looking

ahead, forward checking, backchecking, and backmarking procedures. In

section III we compare the complexity of these algorithms as they solve

the N-queens problem and problems generated randomly. We measure com-

plexity in terms of number of table lookups and number of consistency

checks. These results show that standard backtracking is least efficient

in most cases and bit parallel forward checking is most efficient for the

cases tried.

In section IV, we give a statistical analysis of constraint satis-

faction searches and demonstrate the statistical reason why forward

checking requires fewer expected consistency checks than standard back-

tracking. In section V we explore other applications of the fail first

or prune early tree search strategies and show that such particular

strategies as choosing the next unit to be that unit having fewest labels

left and testing first against units whose labels are least likely to

succeed reduce the expected number of consistency tests required to do

the tree search. Finally, by changing the unit search order dynamically

in every tree branch so that the next unit is always the one with fewest

labels left, we show experimentally that performance improves for each

procedure and that forward checking even increases its computational

advantage over the other algorithms.

It
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1A
2 A,B
2 C

3 A,B,C,D
3 E

4 A
4 B

5 A,B,C
5 D

6 A,B,C,D,E,F
5 E,F

4 C,D,E,F
3F

4 A
4 B

5 A,B,C,D,E,F
4 C,D,E,F

Figure 2 illustrates a segment of a tree trace that the

standard backtracking algorithm produces for
a 6 queens problem. No solutions are found in

this segment. The entry 2 A,B, for example,
indicates that labels A and B were unsuccessful
at level 2, but 2 C succeeds when checked with
past units, and the tree search continues with
the next level.
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!I. SOME PROCEDURES FOR TREE SEARCH REDUCING

In this section we give brief descriptions of five procedures,

and a variation of data structure in one, which can be used within

the standard backtracking framework to reduce tree search operations.

They are called full and partial looking ahead, forward checking,

backchecking, and backmarking. Each of these procedures invests

resources in additional consistency tests or data structures at

each point in the tree search in order to save (hopefully) more

consistency tests at some point later in the tree search.

For ease in explaining these procedures, we call those units

already having labels assigned to them the past units. We call the

unit currently being assigned a label the current unit and we call

units not yet assigned labels the future units. We assume the existence

of a unit-label table which at each level in the ,.ree search indicates

which labels are still possible for which units. Past units will of

course have only one label associated with each of them. Future

units will have more than one. The tree search reducing procedures

invest early to gain later. Hence, the result of applying any of

them in the tree search will be to decrease the number of possible

labels for any future unit or reduce the number of tests against

past units.

II.1 Looking Ahead

Waltz filtering (Waltz, 1972), a procedure by Ullman (1966),

discrete relaxation (Rosenfeld, Hummel, Zucker, 1976), and the

... ... ... ...... ..... . ......... . , . '.,. ,, . d , , ,,L , .... t
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T operator of Haralick et al. (1978) are all examples of algorithms

that look ahead to make sure that (1) each future unit has at least

one label which is compatible with the labels currently held by

the past and present units and (2) each future unit has at least

one label which is compatible with one of the possible labels for

each other future unit. Looking ahead preventsthe tree search from

repeatedly going forward and then backtracking between units U and V,

v < u, only to ultimately discover that the labels held by units

1 through v cause incompatibility of all labels between some unit

W, W > U, and some past, current, or future unit.

Because looking ahead in this manner cannot remember and save

most of the results of tests performed in the lookahead of future

units with future units for use in future lookaheads, the full savings

of looking ahead are not realized for many problems. A partial look

ahead that does not do all the checks of full look ahead will perform

better, and one that checks only future with present units (neglects

future with futures) will do much better because all tests it performs

can be usefully remembered.

The procedure LATREE SEARCH and its associated subroutines

CHECK-FORWARD and LOOKFUTURE (Figure 3 a,b, and c) is a formal

description of the full looking ahead algorithm, which can easily

be translated into any structured recursive language. U is an integer

representing the unit, and will increment at each level of the tree

search. It takes on the value 1 at the initial call. F is a one

dimension array indexed by unit, where entry F(u) for unit u is

the label assigned to u. T and NEWT are tables, which can be thought

I
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of as an array of lists, T(u) is a list of labels which have not

yet been determined to be not possible for unit u. (We implemented

T as a 2 dimension array, with the number of entries in each list

(or row) stored in the first position of the row. This implementation

uses approximately (NUMBER OFUNITS) 2 x (NUMBEROF LABELS) words

of memory for table storage since there can be NUMBEROF UNITS

levels of recursion.) The tree search is initially called with T

containing all labels for each unit. All other variables can be

integers. EMPTYTABLE and NUMBER OFUNITS and NUMBER OFLABELS

have obvious meanings.

The function RELATION(uI, 2 R 2) returns TRUE if ( Zi,zi, 212

e R, otherwise it returns FALSE. CHECKFORWARD checks that each

future unit label pair is consistent with the present label F(u)

for unit u as it copies the table T into the next level table

NEWT, LOOKFUTURE then checks that each future unit label pair

in NEW T is consistent with at least one label for every other unit,

and deletes those that are not.

In this implementation CHECKFORWARD and LOOK FUTURE return

a flag, EMPTYROWFLAG, if a unit is found with no possible consistent

labels. Thus the next level of the tree search will not be called,

otherwise each entry in NEW T is consistent with u,F(u), and therefore,

all the past unit-label pairs.

11.2 Partial Looking Ahead

Partial looking ahead is a variation of looking ahead which does

approximately half of the consistency checks that full looking ahead

does while checking future with future units. Each future unit-label
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pair is checked only with units in its own future, rather than all

other future units. Thus partial looking ahead is less powerful

than full looking ahead in the sense that it will not delete as

many unit-label pairs from the lists of potential future labels.

We will, however, see that partial looking ahead does fewer total

consistency checks than full looking ahead in all cases tested.

The checks of future with future units do not discover inconsistencies

often enough to justify the large number of tests required, and these

results cannot be usefully remembered. Since partial looking ahead

does fewer of these less useful tests, it is more efficient. A look

ahead that checks only future with current or past units can have

better performance since these more powerful tests can also be

usefully remembered.

The formal algorithm for partial looking ahead is LATREESEARCH

(figure 3a), with the call to LOOKFUTURE on line 5 replaced with

an identical call to PARTIAL LOOK FUTURE (figure 3d).

11. 3 Forward Checking

Forward checking is a partial lookahead of future units with

past and present units, in which all consistency checL-3 can be remembered

for a while. This method is similar to looking ahead, except that

future units are not checked with future units, and the checks of

future units with past units are remembered from checks done at past

levels in the tree search. Forward checking begins with a state of

affairs in which there is no future unit having any of its labels

inconsistent with any past unit-label pairs. This is certainly true
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at the base of the tree search, since there are no past units with

which to be inconsistent. Because of this state of affairs, to get

the next label for the current unit, forward checking just selects

the next label from the unit label table for the current unit. That

label is guaranteed to be consistent with all past unit label-pairs.

Forward checking tries to make a failure occur as soon as possible in

the tree search by determining if there is any future unit having

no label which is consistent with the current unit-label pair.

If each future unit has consistent labels, it remembers by copying

all consistent future unit-label pairs to the next level's unit

label table. If every future unit has some label in the unit label

table which is consistent with the current unit-label pair, then the

tree search can move forward to the next unit with a state of affairs

similar to Flow it started. If there is some future unit having no

label in the unit label table which is consistent with the current

unit-label pair, then the tree search remains at the current level with

the current unit and continues by selecting the next label from the

table. If there is no label then it backtracks to the previous unit

and the previous label table.

The formal algorithm for forward checking is the Procedure

L_ATREESEARCH (Figure 3a) with line 5, the call to LOOKFUTURE,

removed. Forward checking is just looking ahead, omitting the future

with future checks.

An improvement in efficiency can be gained in the lookahead

type of algorithms by using a data structure for the unit - label

tables that is suggested by McGregor (1979). McGregor simultaneously

R .4L
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developed a weaker form of the forward checking algorithm and compared

them on subgraph isomorphism problems. In LA TREESEARCH and CHECKFORWARD

the lists T(u) or NEWT(u) can be stored as bit vectors, with one bit in

the machine word for each possible label (this is essentially a set

representation). Lines 4, 5 and 6 in CHECKFORWARD (figure 3b) can then

be replaced with the following statement:

NEW_T(U2) - AND( T(U2), RELATIONBITVECTOR(U,L,U2) )

This single statement replaces a loop, taking advantage of the parallel

bit handling capabilities of most computers. RELATIONBITVECTOR (t,Z,c±2)

returns a bit vector with a bit on in each position corresponding to a

label Z2 for which RELATION (u,t,u2,U2) would have been true. This is

essentially the set {21 (LZL 2 ,/2 ) E RI. Thus NEWT (u2) becomes the

set {Z2 e T( 2)I (UZ, 2,Z2) E R}, precisely what lines 4, 5, and 6 do.

If the number of labels is lqss than the word length of the computer used,

then the relation can be directly stored in an array of size (NUMBER OF

UNITS) x (NUMBER OF LABELS), and the tables T and NEWT will take

2
approximately (NUMBER OF-UNITS) words of storage. Reduced forms of the

relation exist for some problems, such as the N-queens problem or the

subgraph isomorphism problem, in which only two dimensional tables need

be stored and a quick calculation will generate the needed list. The

same technique can be applied to the full and partial looking ahead

algorithms, but they will not be compared here since the three algorithms

will have approximately the same relationships of efficiency, to each

other, with or without the improved data structure.

At
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11.4 Backchecking

Backchecking is similar to forward checking in the way it

remembers unit label pairs which are known to be inconsistent with

the current or any previous unit label. However, it keeps track of

them by testing the current unit label only with past unit label

pairs and not future ones. So if, for instance, labels A, B, and C

for unit 5 were tested and found incompatible with label B for unit

2, then the next time unit 5 must choose a label, it should never

have A, B, or C as label possibilities as long as unit 2 still has

the label B.

Each test that backchecking performs while looking back from

the current unit U to some past unit v, forward checking will have

performed at the time unit v was the current unit. Of course,

at that time, forward checking will also have checked all future

units beyond unit u. Hence, backchecking performs fewer consistency

tests, an advantage. But backchecking pays the price of having

more backtracking and at least as large a tree as forward checking.

Backchecking by itself is not as good as forward checking.

11.5 Backmarking

Backmarking (defined in Gaschnig, 1977, and also discussed in

Gaschnig, 1978) is backchecking with an added feature. Backchecking

eliminates performing some consistency checks that were previously

done, had not succeeded, and if done again would again not succeed.

Backmarking also eliminates performing some consistency checks that
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were previously done, had succeeded, and if done again would again

succeed. To understand how backmarking works, recall that the tree

search by its very nature goes forward, then backtracks, and goes

forward again. We focus our attention on the current unit u. We let

v be the lowest ordered unit to which we have backtracked (has changed

its label) since the last visit to the current unit u. Backmarking

remembers v. If v au, then backmarking proceeds as backchecking.

If v < u, then since all the labels for unit u had been tested in

the last visit to unit u, any label now needing testing, needs only

to be tested against the labels for units v to u-1, which are the

ones whose labels have changed since the last visit to unit u.

That is, the tests done previously against the labels for units 1

through v-1 were successful and if done again would again be

successful because labels for units 1 thorugh v-1 have not changed

and the only labels permitted for the current unit U are those which

have passed the earlier tests (see figure 4).

The formal algorithm for Backmarking appears in figure 5.

It is essentially Gaschnig's algorithm (in Gaschnig, 1977), but

modified to find all solutions. The variable U and array F are the

same as in looking ahead. LOWUNIT is a one dimensional array of

NUMBER OF-UNITS entries, and LOWUNIT(i) will indicate the lowest

level at which a change of label has occurred since the last time

the MARK array is set. MARK is dimensioned NUMBER OFUNITS by

NUMBEROFLABELS, and MARK(u,Z) will indicate the lowest level at

which a consistency test failed when the unit label pair (u,Z)

at the current level was last tested against the previous unit
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label pairs on previous levels. At any point if MARK(u,1) is less

than LOWUNIT(u) then the algorithm knows that (u,Z) has already

been tested against the unit- label pairs at levels below the value

in LOWUNIT(u) and will fail at level MARK(u,t), so there is no

need to repeat the tests. If MARK(u,Z) is greater or equal to

LOWUNIT(L) then all tests will succeed below the level LOWUNIT(u)

and only tests against units at LOWUNIT(u) to the current unit

need be tested.

Before the initial call to BACKMARK, all entries in LOWUNIT

and MARK are initialized to 1, and BACKMARK is called with the initial

u = 1. Since the same MARK and LOWUNIT arrays are used at all levels

of recursion of the tree search, approximately (NUMBER OFUNITS) x

(NUMBER OF LABELS) words of table storage are needed.

i
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1. RECURSIVE PROCEDURE L A TREE SEARCH(U,F,T);

2. FOR F(U) = each element of T(U) BEGIN

3. IF U < NUMBEROFUNITS THEN BEGIN

4. NEWT = CHECKFORWARD(U,F(U),T);

5. CALL LOOKFUTURE(U,NEW T);

6. IF NEW T is not EMPTY ROW FLAG THEN

7. CALL L_A_TREESEARCH(U+1,F,NEWT);

8. END;

9. ELSE

10. Output the labeling F;

11. END;

12. END L_A_TREESEARCH;

Figure 3a

1. PROCEDURE CHECKFORWARD(U,LT);

2. NEW T = empty table;

3. FOR U2 = U+l TO NUMBER OFUNITS BEGIN.

4. FOR L2 = each element of T(U2)

5. IF RELATION(U,L,U2,L2) THEN

6. Enter L2 into the list NEW T(U2);

7. IF NEW T(U2) is empty -HEN

8. RETURN (FMPTY ROWFLAG); /* No consistent labels */

9. END;

10. RETURN (NEWT);

11. END CHECKFORWARD;

Figure 3b

Figures 3a, b, and c express the full looking ahead algorithm.
Replace the call to LOOKFUTURE at line 5 in figure 3a
with an identical call to PARTIAL LOOK FUTURE (figure 3d)
and the partial looking ahead algorithm is obtained.
Forward checking consists of figure 3a and 3b with line 5
of figure 3a, the call to LOOK FUTURE, deleted so that only
CHECK FORWARD is called. Forward checking does no checks
of future units with future units.
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1. PROCEDURE LOOKFUTURE(U,NEWT);

2. IF U+l > NUMBER OFUNITS THEN RETURN;

3. FOR Ul = U+l TO NUMBEROFUNITS BEGIN

4. FOR L1 = each element of NEWT(UI)

5. FOR U2 = U+l TO NUMBEROFUNITS except skipping Ul BEGIN

6. FOR L2 = each element of NEWT(U2)

7. IF RELATION(Ul,LI,U2,L2) THEN

8. BREAK for L2 loop; /* consistent label found */

9. IF no consistent label was found for U2 THEN BEGIN

10. Delete Li from list NEWT(Ul);

11. BREAK for U2 loop; /* unit U2 has no label

consistent with Ul,Ll */

12. END;

13. END for U2 loop;
14. END for L1 loop;

15. IF NEWT(Ul) is empty THEN BEGIN

16. NEWT = EMTYROWFLAG;

17. RETURN;

18. END;

19. END for UIl loop;

20. RETURN;

21. END LOOKFUTURE;

Figure 3c

Figure 3c is the LOOK FUTURE procedure, which deletes future
labels which are not consistent with at least one
label for every unit other than the labels own unit.

v.
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1. PROCEDURE PARTIALLOOKFUTURE(UNEWT);

2. IF U+1 > NUMBEROFUNITS THEN RETURN;

3. FOR Ul - U+l TO NUMBEROFUNITS - 1 BEGIN

4. FOR Li = each element of NEWT(Ul)

5. FOR U2 = Ul+l TO NUMBER OFUNITS BEGIN

6. FOR L2 = each element of NEW_T(U2)

7. IF RELATION(Ul,Ll,U2,U2) THEN

8. BREAK for L2 loop; /* consistent label found */

9. IF no consistent label was found for U2 THEN BEGIN

10. Delete Li from list NEWT(Ul);

11. BREAK for U2 loop; /* unit U2 has no label

consistent with Ul,Ll */

12. END;

13. END for U2 loop;

14. END for Li loop;

15. IF NEWT(U1) is empty THEN BEGIN

16. NEW T = EMPTYROWFLAG;

17. RETURN;

18. END;

19. END for Ul loop;

20. RETURN;

21. END PARTIALLOOKFUTURE;

Figure 3d

Figure 3d is the PARTIAL LOOKFUTURE procedure. It differs from
LOOKFUTURE (fTgure 3c) only at lines 1, 3, and 5. Each
future unit-label pair is checked only with units in its
own future.



-19-

UNIT NUMBER

IV

z

z

z A-

LU

Fiue4ilsrtsasgeto retae eas

th laesfruisItruhv1(emn )d

nochaveitgrememerfrm Onhe ftisit font

v through u-I (segment B) have to be performed.



-20-

1. RECURSIVE PROCEDURE BACKMARK(U,F,MARK,LOWUNIT);

2. FOR F(U) = I TO NUMBER OF LABELS BEGIN

3. IF MARK(U,F(U)) L LOWUNIT(U) THEN BEGIN

4. TESTFLAG = TRUE;

5. I = LOWUNIT(U);

6. WHILE (I < U) BEGIN /* Find lowest failure */

7. TESTFLAG = RELATION(I,F(I),U,F(U));

8. IF NOT TESTFLAG THEN BREAK while loop;

9. I- I+1;

10. END while loop;

11. MARK(U,F(U)) - I; /* Mark label with lowest failure */

12. IF TESTFLAG THEN

13. IF U < NUMBER OF UNITS THEN

14. CALL BACKMARK(U+t,F,MARK,LOWUNIT);

15. ELSE

16. Output the labeling F;

17. END;

18. END for F loop;

19. LOWUNIT(U) = U - 1; /* Previous level will now change */

20. FOR I - U+1 TO NUMBER OF UNITS;

21. LOWUNIT(I) = MIN(LOWUNIT(I),U-l);

22. RETURN;

23. END BACKMARK;

Figure 5 is Gaschnig's backmarking procedure as it was modified to

find all solutions to constraint satisfaction problems

(see Gaschnig, 1977).
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III. Experimental Results

In this section we compare the six procedures, partial and

full looking ahead, backtracking, backchecking, forward checking,

and backmarking, on the N-queens problem for 4 < N < 10, and on

a random constraint problem. We assume that the unit order is

fixed in its natural order from 1 to N and that all consistency

tests of the current unit with past units or future units begin

with the lowest ordered unit. The label sets will consist of all

N columns; no consideration is given to the various symmetries

peculiar to the N-queens problem.

The random constraint problems are generated using a pseudo-

random number generator. A random number is generated for each

possible consistency check (hi,z1 ;U2,z2 ) for the relation R, sq that

each entry in the relation will be made with probability p. A

probability of p = 0.65 is chosen so that problems will be generated

!i that are somewhat similar to the N-queens problem.

The comparison among the tree search reducing procedures

indicates that backtracking is least efficient in most cases, and

that backmarking and forward checking are more efficient for the

cases tested. Bit parallel forward checking, which takes advantage

of machine parallelism, is the most efficient for all cases tried.

Our comparison of algorithm complexity will be in terms of nine

criteria involving number of consistency tests, number of table

lookups, and number of nodes in the tree search. There are a variety

of ways of presenting these results including

1. Number of consistency tests performed to obtain all solutions

(figures 6 and 8).
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2. Number of table lookups used in finding all solutions (figures

10 and 11).

3. Number of nodes in the tree search to obtain all solutions

(figure 12).

4. Number of nodes visited at each level in the tree search.

(figure 13).

5. Number of nodes found to be consistent at each level in the

tree search, or consistent labelings to depth (figures 17 and

18).

6. Number of consistency checks at each level in the tree search

(figure 19).

7. Number of table lookups at each level in the tree search

(figure 20).

8. Percentage of nodes at each depth that fail because an incon-

sistency was found at that depth (figures 21 and 22).

9. Average number of table lookups per consistency check (figures

23 and 24).

Figure 6 indicates that the number of consistency tests

performed to obtain all solutions seems to increase exponentially

with N for the N-queens problem. The number of solutions to the

N-queens probelm also appears to increase exponentially (see figure

7). The number of bit vector operations is also shown, for forward

checking done in the bit vector data structure. Though backmarking

appears to do slightly fewer consistency checks than forward

checking on the N-queens problem, the use of machine parallelism

gives bit parallel forward checking a clear advantage over all the

other algorithms.
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Random constraint problems with fixed probability .65 of consis-

tency check success probability of 0.65 are tested in figures

8 and 9. The number of consistency tests appears to grow expon-

entially in figure 8, until a sufficiently large problem size is

reached. At this point the number of solutions drops, as is

indicated in figure 9, and the number of consistency tests appears

to grow more slowly. Figure 9 explains the unevenness of the

curves in figure 8. Too few random relations were tested for the

means to settle closely to the expected values for this type of

problem, and the average number of solutions varies eratically

high and low.

In the random problems, forward checking does slightly fewer

consistency checks than backmarking in the larger problem sizes,

and once again mathing parallelism gives bit parallel forward

checking a clear advantage.

The number of table lookups for the N-queens and random

relation problems are compared in figures 10 and 11. Only the

lookups in the MARK array in backmarking and backchecking, and the

T or NEWT tables in the lookahead type algorithms are considered.

These table lookups occur at line 3 in figure 5, backmarking,

line 2 in figure 3a, line 4 in figure 3b, and lines 4 and 6 in

each of figures 3c and 3d, the lookahead type algorithms. The

entering of values into the tables are not considered, since they

always follow at least one consistency check, and never happen

more often than consistency checks.

-i&-s %'W
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Figure 7 illustrates the number of solutions for the
N-queens problem.

I
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Figure 8 represents the number of consistency tests £n the
average of 5 runs of the indicated programs.
Relations are random with consistency check probability
p-0.65 and number of units a number of labels - N.
Each random relation is tested on all 6 methods, using
the same 5 different relations generated for each N.
The number of bit-vector operations in bit parallel
forward checking is also shown for the same relations.
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Figure 9 shows the average number of solutions for the prob-
abilistic relations in figure 8. This is the
average of 5 experiments for each problem size,
and relations are random with consistency check
success probability p-0.65. The dotted curve is
the expected number of solutions.
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Figure 10 shows the number of table lookups used to find
all solutions to the N-queens problem for varying
N, with the natural unit order.
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Figure 11 shows the number of table lookups for the average of
5 random relations at each N, with number of units -
number of labels N, and probability of consistency
check success p = 0.65. These random problems are the
same as shown in figures 8 and 9.
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3 A,C

2 F

figure 14 shows a segment of a tree trace made by the

full looking ahead procedure in a 6-queens
problem. One consistent labeling,

IB 2D 3F 4A 5C 6E, appears in this protion of

the trace. 1A 2C fails to spawn any further

nodes because the LOOKFUTURE algorithm will,

after deleting several potential labels, discover

that one future unit has no possible labels.

"
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1 A
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2E
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Figure 15 is a segment of a tree trace showing the nodes of the
tree search in the partial looking ahead procedure
in a 6-queens problem. One consistent labeling,
lB 2D 3F 4A 5C 6E, appears in this portion of the
trace. 1A 2C 3A,B,C, and D do not appear because
CHECK FORWARD removes them from the table at nodes
IA and 2C. However lA 2C 3E fails to have successors
because the only labels left for future units 4 and 6
are incompatible and are removed by LOOKFUTURE
(see figure la).

I.
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1 A
2 C

3 E
4 B

3 F
4 B

2 D
3 B

4 E
3 F

4 C
2 E

3 B
4 F

2 F 5C

3 B,D
lB

2 D
3 A

4 C
5E

3F
4 A

5 C

56 E5 E

4 C

Figure 16 shows a segment of a tree trace made by the
forward checking procedure in a 6-queens problem.
One consistent labeling, lB 2D 3F 4A 5C 6E, is
found. Notice that IA 2C 3E 4B fails because
the CHECK FORWARD procedure discovers that there
are no lebels remaining for unit 6 at the 4B node
(see figure lb).

MIIIII
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Figure 17 illustrates the number of consistent labelings
as a function of tree depth, for the 8-queens
problem with the natural unit order.
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Backtracking is not shown, since it does no table lookups of

the type considered. Partial and full looking ahead always do

more table lookups than forward checking in these cases, and

forward checking does better than backmarking in the larger

problem sizes. Even full looking ahead does fewer table lookups

than backmarking in the larger random problems. The number of

table lookups into bit vectors is smaller than the number of table

lookups in other algorithms, when the bit parallel data structure

is used in forward checking.

Figure 12 demonstrates that full looking ahead visits the

fewest nodes in the tree search, since it eliminates the most

potential nodes during its examination of future unit-label pairs.

Figure 13 indicates that the number of nodes visited in the

tree search is largest for the middle levels in the tree search,

with the full looking ahead procedure having the fewest nodes at

each level.

Figures 14, 15, and 16 show segments of the trace of nodes

visited by the full and partial looking ahead, and forward checking

algorithms for the 6-queens problem. Backmarking and backchecking

will have the same node trace as backtracking (see figure 2). More

detailed trace of the action of backmarking can be found in Gaschnig,

(1978 and 1979).

Figure 17 shows the number of consistent labelings at each depth

of the tree search for the 8-queens problem, and figure 18 shows

the average number of consistent labelings for random problems.

This is the number of nodes at each level which have not yet been

I?
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Figure 18 illustrates the average number of nodes visited at
each depth of the treesearch for solutions to 5
random relations with number of units - number of
labels -10, and probability of consistency check
success of p - 0.65. These are the 5 relations
shown at the N - 10 case in figures 8, 9, and 11.
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DEPTH IN TREE SEARCH

Figure 21 shows the percentage of nodes at a given depth in
the tree search which fail because some inconsistency
is detected at that node. Results are shown for
the various algorithms in the 8-queens problem.
Backchecking and backmarking often discover that
there is an inconsistency by using table lookups,
rather than performing all the checks. Nodes
in the lookahead type algorithms fail because a
future unit fails to have any remaining labels
after inconsistent future labels are removed.
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Figure 22 shows the percentage of nodes at a given depth
in the tree search which fail because some incon-
sistency is detected at that node. Results are
shown for the average over 5 random relations,
with consistency check probability p=0.65 and
number of units n number of labels = 10.
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found to be inconsistent. Backmarking and backchecking will have

the same search tree as backtracking, and consequently has the same

number of nodes and consistent labelings at each depth (see figures

13, 17, and 18). Their effic-encies are gained by reducing the

ammount of work spent at each node, checking against past units.

However, the lookahead algorithms perform extra work at each node

to reduce the number of nodes, and as figures 19 and 20 show, the

relation checks and table lookups for the lookahead type algorithms

are concentrated more at the shallow depths of the treesearch.

As figures 6, 8, 10, and 11 show, full and partial looking ahead

do too much work at each node for the problems shown, and forward

checking and backmarking do better.

The percentage of nodes at each depth in the tree search that

fail because some inconsistency is discovered are shown in figures

21 and 22. In the cases shown, in the backtracking, backchecking,

and backmarking algorithms, over 95 percent of the nodes (instantiated

labels) fail at the deepest level of the treesearch, because they

are inconsistznt with some past unit-label pair.

The lookahead type algorithms reduce the number of nodes in

the treesearch in two ways. First by removing entries from the

tables of potential unit-label pairs, and second by noticing that

some future units may have no possible labels associated with

them. In Figures 21 and 22 all nodes that fail in the lookahead

type algorithms do so for this second reason, since they would not

have occured as nodes if their labels were deleted from the future

unit-label tables. If lines 7 and 8 are removed from the CHECK_

7-.
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Figure 23 shows that in the N-queens problem, all the
algorithms that keep tables, except backmarking,
reference those tables no more than 35 percent
more often than they reference the relation.
THowever backmarking appears to have a continually
growing ratio of table lookups to relati.on tests,
as problem size grows.
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Figure 24 demonstrates that in the average over 5 random
relations for each problem size that was cested,
that the ratio of cable lookups to consistency
checks seems to approach one, except in the
backmarking algorithm,. in which the ratio seems
to steadly increase with problem size. The random
relations are the same as those shown in figures

8, 9, and 11.
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FORWARD procedure in figure 3b, then no nodes would fail in forward

checking (this is McGregor's restricted arc consistency algorithm

in McGregor, 1979). This weaker form of forward checking algorithm

will find all the consistent labelings at each level of the tree search

that backtracking does, but at a higher cost than the original forward

checking algorithm. The replacement of these lines in forward

checking will realize a 15 percent saving of consistency checks and

table lookups in the 10-queens problem, and over 40 percent savings

in the 10 units by 10 labels random problem.

Figures 23 and 24 address the question of what measure best

determines the algorithmic time complexity. A careful check of

all the algorithms will show that no step is executed more often

than the maximum of the number of consistency checks or the number

of table lookups. As the problem size increases in the lookahead

type of algorithms, the ratio .f table lookups to consistency checks

seems to decrease from a maximum of about 2 to no more than 1.5

table lookups per consistency check in both the N-queens and random

problems. This ratio is guaranteed to be greater than or equal to

one, bv the algorithms structure, thus either may be used as a

measure of algorithmic time complexity for the lookahead type

algorithms.

Because in both the N-queens and random problems backmarking

seems to have a steadily increasing ratio of table lookups to

consistency checks as problem size grows, only table lookups (which

equals the number of nodes in the treesearch in this case) can be

used as a true measure of algorithmic time complexity for backmarking.



- 46 -

Only in the case that a computation of a relation check is sig-

nificantly more expensive than the cost of a node's loop control

and a table lookup will relation checks be a useful practical

measure for the time complexity of backmarking. The reason

that it is a practical measure in this case is that the node and

table lookups cost will dominate the cost of execution only in

very large probelm sizes, so large that the problems can not be

solved in a reasonable time, and relation tests will dominate the

cost in the smaller problems which can be solved in a practical

ammount of time.
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IV. Statistical Model for Constraint Satisfaction Searches

Our statistical model for random con.,traint satisfaction is

simple. The probability that a given consistency check succeeds

is independent of the pair of units or labels involved and is

independent of whatever labels may already have been assigned

to past units. Hence, P((u k+ ,k+l ,u,)R k are

consistent labels of I ... ,' k )=P((u k+lZ k+1 ,,)R) for every

UZ.

The N-queens problem is a more difficult problem, with fewer

solutions but requiring more consistency tests than the corres-

ponding random constraint problem with the same probability of

consistency check success. A comparison of the graphs for the two

prob-lems in section III will show that while the num~rical values

of the quantities vary considerably, the basic character of the

algorithms operation is similar for both problems.

In our analysis, we will assume that a given pair of units

with a given pair of labels is consistent with probability p,

p being independent of which units, which labels, or any past

processing. If each unit has the same number,, M, of possible

labels, then any k-tuple of labels for any k units has prob-

ability pk(k-l)/2 of being consistent since each labeling must

Mk
satisfyk(k-l)/2 consistency checks. Since there are M possible

labelings of k units, the expected number of consistent labelings

is

Mpk k(k-l)/2
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The expected number of nodes processed at level k in a standard

backtracking search will be M, the number of possible labels, times

the number of consistent labelings at the previous level,

k-i (k-l)(k-2)/2
M p Thus there are

k (k-l)(k-2)/2
p

tree search nodes at level k.

We can also count the expected number of consistency checks

performed by backtracking. We expect Mk P (k-l)(k-2)/2 level k

nodes and at each node a label must be tested for consistency with

the labels given the previous k-i units. The first consistency

check fails with probability i-p. If it fails, we have spent 1

test. If it succeeds we have spent i test and are committed to

make another one which might also succeed with probability p. All

(k-1)
(k-i) tests will succeed with probability p . Hence the

expected number of consistency checks performed at each node is

k-li - lip- (l-p) + (k-l)pk -I

' i=l1

This may be simplified by recognizing the telescopic nature of the

sum which is equal to

k-2Z p.

i=O

But this is a geometric sum and is equal to

k-i

1 -p

Therefore the expected number of consistency checks at level k

k (k-i)(k-2)/2
will be M p , the number of nodes at level k times

k-i
- p ,the expected number of consistency checks at a node,

o--p
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making

Mk p(k-l)(k-2)/2 i - pk-i

M p p

consistency checks at level k. Of cource the expected total number

of consistency checks will be the summation of the expected number

of consistency checks for each level k for k ranging from 1 to N,

the number of units.

The computation of the number of labelings for the forward

checking algorithm is somewhat more complicated because the algo-

rithm stops checking when a future unit has no labels that are

consistent with the past and present unit-label pairs. A consis-

tent labeling to depth k occurs when the tree search successfully

reaches a given label for unit k and forward checking of that unit-

label pair produces no future unit that has no remaining labels.

Thus the consistent labelings to depth k for forward checking meet

exactly the following conditions:

1) a 1 2 2 .... ,kk are consistent unit-label pairs.

2) There is no future unitu in levels k+l, ..., N for which

there is no label Z so that u,1 is consistent with

k(k-l)/2
The k unit-label pairs are consistent with probability p

and there are possible labelings to depth k (condition 1). A

future unit-label pair is consistent with the k past and present

unit-label pairs w±th probability p and there are M possible

labels for a future unit, so the probability that a future unit

has no label that is consistent with the k past and present units

is (1 - pk M. Since there are N units, there are N-k future units,

Il
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and the probability that all of these has at least one label that

is consistent is [I - (L-pk)MI N - k  (condition 2). Thus the expected

number of consistent labelings to depth k for forward checking is

k k(k-l)/2 k M N-k
M p [ - (l-p)

The expression for the expected number of nodes in the forward

checking tree search at level k is very similar to that for the

number of consistent labelings to depth k, since each node will

perform forward checks to determine if its label will become a

consistent labeling. The labels for a node must meet condition I

above, but the future units are required to have succeeded with at

least one label only for checks with the unit label pairs

11' . . Uk-lYk_ , since each node was in the table for a consis-

tent labeling to depth k-1, and if any future unit as seen from

level k-i failed to-have a label then it would not have spawned

nodes at the next level. Thus in each node the future units will

have at least one label and the second condition occurs with

k-IL M N-k
probability [I - (L-p-) ] Thus the expected number of nodes

at depth k in forward checking is

Mk k(k-l)/2 ( pk-) M N-kMp [1L-(-p ) .

A slight overapproximation for the expected number of consis-

tency checks at depth k in the tree search can be found by multiplying

the expected number of nodes at the depth times the expected number

of labels remaining for each future unit times the number of future units,

N-k. Since each future unit will have at least one label, this
k-i

expected number of labels will be M p Thus the expected
- (l-p k-l)

M

. .,.l
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number of consistency checks in forward checking will be

Mk+l (k+2)(k-l)/2 )k- M IN-k-IX p[1i- (1-p k - I ] (N-k).

The exact expected value can be obtained by replacing the number

of future units term, (N-k), with the expected number of future

units tested, since forward checking will stop testing as soon as

a future unit is discovered to have no possible labels. Each of

these tests of a future unit will succeed with probability

k M
i - (1-pk)M , and reasoning similar to that for the number of

consistency checks at each node in backtracking will give

(ik M N-kI [l -p for the expected number of future units

(-pk)
M

tested. Thus the expected number of consistency checks at level k

in forward checking will be

Mk+l (k+2)(k-l)/
2  (i k-l )M N-k-i l-[l-(l-pk ) M

N -k

(1-P ) kM(i-pk) M

The number of table lookups in forward checking is the sum of

the number of consistency checks and the number of nodes. Thus the

expected number of table lookups at depth k in the teee search will

be

kk(k-l)/2 k-i M N-k M pk-i k)M]N-k
Mkp [l-(l-p ) I [l + (pk-lM (lpk)M

The expected number of bit vector operations with the bit

parallel data structure in forward checking can easily be found, by

removing the term for the number of labels remaining for each future

unit from the expression for the number of consistency tests, since

only one operation will be performed for each unit, giving
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k(k-)/2 k-1 M N-k 1 -[i-(l-p k M N-k
Mk p [l-(l-p ) ]  k M

(i-pk)M

for the expected number of bit vector operations at level k in

bit parallel forward checking.

The number of table lookups in bit vectors is still the sum of

the number of bit vector operations and the number of nodes, for

k M N-k
Mk k(k-l)/2 l_(l-pk-l) M N-k [ +-[l-(l-pk)]M l(- I+ k

(1-pk)

table lookups into bit vectors in bit parallel forward checking.

To illustrate the general form of the expressions we computed

for the expected number of consistency checks and expected number

of solutions, we present a few graphs. Figure 25 illustrates the

graph of the expected number of consistency checks as a fun'tion

of tree depth for a random constraint satisfaction problem having

N = 17 units and labels and a probability p = 0.70 of a constraint

being satisfied. Notice that the greater number of tests forward

checking does early in the tree search pays off later in the tree

search both in terms of number of consistency tests and in number

of successful instantiations at each tree depth (figure 26).

Figure 27 illustrates the expected number of solutions as a

function of N and p parameters of a random constraint satisfaction

problem. Increasing N for a fixed p eventually causes fewer

solutions to exist because the number of constraints is increasing

quadratically.

We, of course, expect the number of consistency tests to increase

as N increases and p remains fixed since the search space is becoming

"A
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large very rapidly. This is shown for the forward checking procedure

in figure 28. Also expected is for the average number of consistency

checks per labeling to increase as N increases and p remains

fixed (figure 29). As N increases, the problem of finding the

first solution as well as all solutions is becoming more and more

difficult. Therefore, it is not expected for the number of consis-

tency tests per solution to decrease as the number of solutions

increases. The reason for this is that as the number of solutions

increases more of the tests required to verify a solution become

shared because the solutions have common segments. This is illus-

trated in figure 30.

An experimental check of the theoretical equations for the

number of solutions and number of solutions at a given depth in

the tree search with random relations is given in figures 31 and 32.

Although the average number of solutions is close to the theoretical

result, the individual relations vary widely. The I bars mark a

distance of one standard deviation of the mean above and below the

average of the trials.

Figure 33 demonstrates the accuracy of the theoretical expres-

sion for the expected number of consistency tests with random

relations in the forward checking algorithm. The total expected

number of consistency tests shown is calculated from the sum of

the expected number of tests for each level in the various problem

sizes. For this expression to be correct, the expression for the

expected number of nodes at each level in the forward checking

algorithm must also be correct.

..........
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as I increases, and p is held constant.



-58-

06F ORWARD CHEO(ING Pz .66

PZ.50

x P2.55B

i04

I z'

I /

La 0

: 6 7 a 0 ~ 2 I * '

Figure 2.9 shows how the number cf consistenc,7 teszs p:-r sclution
increases as N increases and p is hel.4 cnst in: in
forward checking.



-59-

N.1

z roO

0'

10IG

EXE:-- U BR O ~3'iG

Fiue3 lutae ht steepce ubro

souin inraeth xetd ubro
cossec hcsprsouindcess c

vayn rbblt ndfxdpolmsz
nube ofuis nmbro aeli h

for ardcekn.agrtm



- 60 -

100 *
90 ,

"'0 , - -1 Mso-

= !

< 50 /4

Z 401

Z 30-
/ .'

* ,

2C

4 5 6 7 8 9 C
NxNUMBER OF UNI-S=NUMGER OF LASELS

Figure 31 shows the expected number of consistent labelings
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Figure 32 indicates the number of consistent labelings to depth
k in the tree search for the average of 25 random
constraint satisfaction problems with probability
of consistency check success of 0.65 and number of
units -number of labels - 10. The dotted curve is
the theoretical expected number of labelings for
such a problem.



- 62 -

I

/
/

,,J

LJ4

/

Z 1 /

-
C,,

. ; I

" 5 6 7 a 9 !0
N- NIMBER OF UNITS zNUMEE. OF LASELS

Figure 33 shows the expected number of consistency checks for
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p - 0.65. Dots represent the average number of consis-
tency checks for 25 random relations tested at each
problem size, and the I bars indicate one standard
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V. The Fail First Principle

One of the strategies which helps tree searching for con-

straint satisfaction problems is the fail first or prune early

strategy of the looking ahead and forward checking procedures.

There are other ways that we can apply the general principle of

trying to fail first (and of course remember that fact so that

there are no unnecessarily repeated mistakes). In this section

we discuss two other applications of this strategy. The first

is by optimizing the order in which we do consistency tests. The

fail first principle states that we should first try those tests

in the given set of tests that are most likely to fail since if

they do fail we do not have to do the remainder of the tests in

the set.

The second application is in dynamically choosing the optimal

order in which to process units in each branch of the tree search.

Optimal unit order choosing, even on a local basis, will not only

lower the number of expected consistency tests per problem as

compared with a random ordering, but it also lowers the variance

of this average. For the unit order choice, the fail first prin-

ciple states that the next unit to choose should be that one

with the fewest possible labels left.

V.1 Optimizing the Consistency Check Order in Tree Searching

Suppose we are solving a constraint satisfaction problem and

suppose units 1.... , have already been assigned labels Z1, K

Alt.
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and we are trying to find a label Z K+ for unit K+l. The label

Z K+ must come from some set S K+ of labels and it must be con-

sistent with each of the previous labels i . that is, we

must have (k, k K+l, K+1) E R for k = it .... K. To determine the

label ZK+19 we sequentially go through all the labels in SK+1

and perform the K consistency checks: (k,kZ K+l,/+) 6 R. If
k$ K+1

one check fails, then we try the next label in SK. If all
K+l*

checks succeed, then we can continue the depth first search with

the next unit.

The optimizing problem for consistency checking is to deter-

mine an order in which to perform the tests which minimizes the

expected number of tests performed. To set up the optimizing

problem, we must have some knowledge about the degree to which a

previous unit's label constrains unit (K+l)'s label. For this

purpose we let P(k) be the probability that the label Z, for unit

k is consistent with some label for unit K+l. We assume that the

consistency checks are independent events so that the probability
K

of the tests succeeding on units 1 through K is a P(k).
k=1

For each order of testing, these probabilities determine the

expected number of tests in the following way. Let kI .... kK be

a permutation of i,... ,K designating the order in which the con-

sistency checks will be performed. The test (k ,k, K+l 1 K) E R

will succeed with probability P(k ) and fail with probability

l-P(k,). If it fails, we incur a cost of one consistency check

and we try the next label. If it succeeds, we will have incurred

A
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a cost of one consistency check and we are committed to try the

next test (k2, t k21lK+l +l ) e R. This test succeeds with prob-

ability P(k2) and fails with probability l-P(k2). At this point,

we have incurred a cost of two tests and may be committed to make

more tests if this one succeeded.

Figure 34 shows the tree of K+l possible outcomes. Since the

tests are assumed independent, the probability for each outcome can

be computed by multiplying probabilities. For example, the prob-

ability of failing on consistency check with unit k is
3

P(kI)P(k2) (1-P(k3)). Also associated with each outcome is the

number of tests performed to get there. For example, failure on

the test with unit k3 incurs a cost of 3 tests.

.1l The expected number of tests C performed is computed by

K i-I K
C i [l-P(ki)] H P(k.) + K - P(k.)

j=1 J i=l

Upon rearranging and simplifying this expression we obtain

K-1 i
C = 1+ 7 E P(K.)

i=l j=l J

Now by the proposition at the end of section V, this is minimized

by having kl, ... ,kK be any permutation of 1,...,K satisfying

P(k1 ) : P(k2 ) L ... < P(kK). Hence, to minimize expected numbers

of tests, we must choose the order so that the tests with units

most likely to fail are done first.

To illustrate the advantage of using optimum consistency test

order, we consider the 10-queens problem when the units are natur-

ally ordered from I to N and the current unit is K, then the fail

a"
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first principle states that tests with past units must be done in

the order of decreasing constraints. Since the row previous to

row k has the strongest constraint on row k, the test order should

be first unit K-i, then K-2, up to unit 1, in the N-queens problem.

Backtracking requires 1,297,488 tests when done in the wrong order

(unit 1, 2, ..., K-i) and 1,091,856 tests when done in the right

order. It is interesting to note that Gaschnig's backjumping

procedure (Gaschnig, 1978) when done with the consistency tests in

the wrong order (1,131,942 tests) performs worse than standard

backtracking with consistency tests in the right order. Further-

more, for the N-queens problem backjumping with consistency tests

in the right order for the N-queens problem is equivalent to stan-

dard backtracking with consistency tests in the right order because

backjumping bactracks to the highest level at which a failure is

detected, and there is always at least one lable at a given level

which fails when checked with the immediately preceding level.

i-
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Figure 34 illustrates the K-9l outcomes of K tests.
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V.2 Optimizing Tree Search Order

Every tree search must assume some order for the units to be

searched in. The order may be uniform throught the tree or may

vary from branch to branch. It is clear from experimental results

that changing the search order can influence the average efficiency

of the search. In this section we adopt the efficiency criterion of

branch depth and we show how by always choosing the next unit

having smallest number of label choices we can minimize the expected

branch depth.

Suppose units 1,...,N are units which are yet to be assigned

labels. Let n(m) be the number of possible or available labels for

unit m. We assume that each oE the n(m) rabels possible for unit m

has the same probability q of succeeding and that success or failure

of one of the labels is an independent event from success or failure

for any of the other labels. Thus, the probability that a unit m

will not have any label that succeeds is (1 - q)n(m). The prob-

ability that some label for unit m succeeds is, therefore,

P(m) = 1 - (I - q)n(m). Unfortunately, this analysis holds only

for the first level of the tree.

Let kl,...,k N be the order in which the units are searched on

the tree. Let P n(k n kl"',kn- ) be the conditional probability

that some label for unit k will succeed when unit k is the nt
h

n n

one in the tree search order given that units kl,... ,k are the

first n-l units searched in the branch. We assume that the prob-

ability of a label for unit k succeeding depends only on the number
n
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of units preceding it in the tree search and not upon which

particular units they are. That is,

P n (k n Jki .. PkrMi)1 P n(k nei, 'n-1)

for all labels ti, tel This conditional independence

assumption justifies the use of the notation P n(k n) to designate

the probability that some label succeeds for unit k nwhen it is

the n thunit in the tree search, and we will call the probability

that an arbitrary label for unit u will succeed when checked against

annother arbitrary unit-label pair the success probability for unit

U.

Units which are searched later in the tree typically have

lower probability for a label succeeding since the label must beI

consistent with the labels given all the earlier units. We want

some way to compare the probability of success for the same unit

in different tree searches. Since the success probability *depends

only on the unit and its level in the tree and since units later in

the tree have lower success probabilities, we assume that the

success probability for a unit u when it is at level i in one tree

search is related to the success probability of unit u when it is

at the first jevel of another tree search by a constant factor

ati_ whereO0<a <l1:

P(u) a =_ P.Mu.

11

---------
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the order kl,... ,k , the expected branch depth is given bym

N-1 n
1 + 7 P.(k.).

n=l j=l

By the proposition at the end of section V, this is minimized

when the unit chosen at each level is that unit whose success prob-

ability is smallest. Thus at level j we choose unit k., whereJ

P.(k.) < P (u) for u # k ... 9kj_.

Now, P.(k.) = aJ-1[l - (1 - q n(kj))]. Since 0 < q i, thisJ J

expression is minimized by choosing k. to be that unit having theJ

smallest number of possible labels.

To illustrate the advantage of using a locally optimal unit

order for each branch in the tree search, we consider the improv-

ment achieved on the N-queens problem and random relation problems.

The number of consistency tests required is given in tables 1 and

2. Some improvement is shown in the larger N-queens problems, and

considerable improvement appears in the larger random relation

problems. Figure 35 demonstrates that the improvement increases

with problem size in the random relation problems with p=0.65 and

number of units = number of labels = N.

The reason why optimal unit order usually improves forward

checking more than backmarking is that forward checking has more

information about future units than backmarking. Therefore,

forward checking's choice of the next unit most likely to fail is

more likely to produce a unit which fails than backmarking's

choice.
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Table I Number of Consistency Tests in N-queens

Problem for Normal and Optimal Unit Order

4 Backcracking Backchecking Full Looking Part Looking Backmarking Forward
Ahead Ahead Checking

Normal Normal Normal Optimal Normal Optimal Normal Optimal Normal Opcimal

4 84 80 99 99 97 97 76 76 76 76

5 405 356 598 578 485 431 276 276 282 282
6 2016 1496 2095 2082 1703 1708 944 921 964 946

7 9297 6042 8942 8941 6511 6318 3236 3168 3338 3229
8 46752 27450 35323 35211 25882 25062 12308 12095 13024 12108

9 243009 131538 153455 151275 112327 106247 50866 50027 55326 .9856

10 1297558 643658 661017 636377 496455 449666 220052 211635 242174 205970

Table 2 Number of Consistency Tests in Average of 3 Random Constraint

Satis-faction Problems with Consistency Check Success Probability
0.65, for Normal and Optimal Unit Order

N - number of units - number of labels

N Backtracking 3ckchecking Full Looking Part Looking Backmarking Forward
Ahead Ahead Checking

Normal Normal Normal Optimal Normal Optimal Normal Optimal Normal Optimal

243 195 230 223 184 174 132 133 133 121
5 1043 731 760 712 599 554 425 382 414 355
6 4637 2514 2543 2288 1966 1700 1288 1159 1273 970
7 12040 6722 5722 5156 4697 3875 3175 2486 3057 '069
8 25893 13490 10779 9306 9111 7233 6089 4300 5979 3425
9 118086 55318 30799 25904 26788 19174 21170 10246 18616 267,

10 163983 73260 44655 36675 41232 2b872 28314 14892 25258 12022

'"- . .. . , , ,,s: ,- - T -' - "-- - . r. --- -... T.-.
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Proposition: Let O<acl be given. For each unit u let P(u) be

its initial success probability. Let kl,...,k N be any permutation

of 1,... ,N satisfying P(k 1 )<P(k 2)<.. .<P(k N). Define

P (u) P n-ip(u). Then,n

N-I n N-1 n
7, P.(k.) < I T P.(u.) for any permutation ul,

n1 j=l 3 3 n=l j=l J j of
of 1,... ,N.

Proof: Let ul,... ,uN be any permutation of I,...,N minimizing

N-1 n
I P.(u.). If uI .... uN we are done. If u ..... uN does not

n=1 j=l 

N

equal kl,.. .,k let m be the smallest index such that um # km

Also let m' be the index such that u # k . Also let m' be the
m inl

index such thatu m , = k m. Define the permutation il,. . . , i N by

i u , n m or m'
n n

i u,
m m

i =u
m, m

We will prove a contradiction by showing that

N-1 n N-1 a
I P.(i.) < 7 I P.(u.)n=l j=l j I n=l j=l j I

by looking at the products. There are three cases: n<m, m<-n<m',

and m'<n.

Case 1 n<m: Here since i. = u., j=l,...,n, we obtain
J1 J

n n
a P.(i.) = I P.(u.).
j=l I I j=l J

......................
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Case 2 m i n < mn':

P P(u) n P (u) n
.3 ji p u) (u ) (I P.(u)
j j m m ji in in (Um ji

Now, P m(u ,) =P m(k ) < P m(u) for any u k19.. k MSince

u #ki)...., k_ 1 9 (,) < P (u) and

n P. ( ( un

m~ m

Case 3 mn' n:

n P(u )P (u) n

*~ P (u )p ,(i I)in mm in 1

P (u )P ,(u,)- P. (u)

P (u )p (u ') 7 a ( .

in-I P.)(Iu.)

7P (u)

j= i j.

N-ice fl N-i P( contradicting the niinirnaiitv

of ul,...,u. Therefore, u,., k.,k
N*. q 1'
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VI. Conclusion

Using complexity criteria of number of consistency checks and

number of table lookups we have shown analytically and experimentally

the efficacy of the remembering and fail first principles in con-

straint satisfaction tree search problems. A new search procedure

called forward checking has been described and it combined with opti-

mal unit order choice leads to a more efficient tree search than

looking ahead or backmarking. A data structure that takes advantage

of a computer's natural ability to process bit vectors in parallel

can make forward checking even more efficient. This suggests that

the entire set of look ahead operators described by Haralick et. al.

(1978) Haralick and Shapiro (1979a, 1979b), the discrete relaxation

described by Waltz (1972) and Rosenfeld et. al. (1976) would be more

efficiently implemented by omitting the consistency tests required

by future units against future units. Further analytic and experi-

mental work needs to be done to determine if this in fact is generally

true. Applicability of the forward checking idea to inference and

theorem proving algorithms needs to be tested and this will be the

topic of a future paper.

7-
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